반응형
Recall: true positives / true positives + false negatives - 'true positive rate'
Precision: true positives / true positives + false positives - 'correct positives'
Specificity = TN / (TN+FP) - 'true negative rate'
F1 score = 2TP / (2TP + FP + FN)
RMSE (Root mean square error) - accuracy measurement
ROC curve (Receiver Operating Characteristic Curve) - 좌상향으로 더 굽어질수록 좋은 모델
AUC (Area Under the ROC Curve)
P-R Curve (Precision / Recall Curve) - 곡선 아래 넓이가 넓을수록 좋은 모델
반응형
'1차완료 > ML' 카테고리의 다른 글
Amazon SageMaker (0) | 2024.01.19 |
---|---|
Ensemble Learning (0) | 2024.01.18 |
Neural Network Regularization (0) | 2024.01.18 |
Tuning Neural Networks (0) | 2024.01.18 |
Modern Natural Language Processing (0) | 2024.01.18 |